Quantum Sheaf Cohomology on Grassmannians

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum cohomology of Grassmannians

The (small) quantum cohomology ring of a Grassmann variety encodes the enumerative geometry of rational curves in this variety. By using degeneracy loci formulas on quot schemes, Bertram has proved quantum Pieri and Giambelli formulas which give a complete description of the quantum cohomology ring. In this talk I will present elementary new proofs of these results which rely only on the defini...

متن کامل

Quantum Cohomology of Isotropic Grassmannians

Let G be a classical Lie group and P a maximal parabolic subgroup. We describe a quantum Pieri rule which holds in the small quantum cohomology ring of G/P . We also give a presentation of this ring in terms of special Schubert class generators and relations. This is a survey paper which reports on joint work with Anders S. Buch and Andrew Kresch.

متن کامل

Quantum Cohomology of Orthogonal Grassmannians

Let V be a vector space with a nondegenerate symmetric form and OG be the orthogonal Grassmannian which parametrizes maximal isotropic subspaces in V . We give a presentation for the (small) quantum cohomology ring QH∗(OG) and show that its product structure is determined by the ring of P̃ -polynomials. A ‘quantum Schubert calculus’ is formulated, which includes quantum Pieri and Giambelli formu...

متن کامل

Quantum cohomology of Grassmannians and affine algebras

We discuss a new approach to the quantum cohomology ring of a Grassmannian. This ring is also isomorphic to the Verlinde algebra. We present a formula for the quantum product of Schubert classes (3-point GromovWitten invarints), or, equivalently, for the fusion product in sl(k). The main combinatorial tool is a cylindric analogue of Young tableux. The formula immediately implies several new ide...

متن کامل

On a Vanishing Result in Sheaf Cohomology

The goal of this note is to give an example for which Theorem 1.1 fails if we only relax the hypothesis that X is quasi-compact (Propositions 2.3 and 3.1). This example emerged from the author’s investigation on local cohomology of valuation rings [Dat16]. In particular, some results from [Dat16, Sections 6, 7] are reproduced below without citation. Any other outside result we use is accompanie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2016

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-016-2763-z